Mutual information for explainable deep learning of multiscale systems

نویسندگان

چکیده

Timely completion of design cycles for complex systems ranging from consumer electronics to hypersonic vehicles relies on rapid simulation-based prototyping. The latter typically involves high-dimensional spaces possibly correlated control variables (CVs) and quantities interest (QoIs) with non-Gaussian multimodal distributions. We develop a model-agnostic, moment-independent global sensitivity analysis (GSA) that differential mutual information rank the effects CVs QoIs. data requirements this information-theoretic approach GSA are met by replacing computationally intensive components physics-based model deep neural network surrogate. Subsequently, is used explain surrogate predictions, surrogate-driven deployed as an uncertainty quantification emulator close loops. Viewed method interrogating surrogate, framework compatible wide variety black-box models. demonstrate provides useful distinguishable rankings via validation step applications in energy storage. Consequently, our “outer loop” accelerated product identifying most least sensitive input directions performing subsequent optimization over appropriately reduced parameter subspaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual Analytics for Explainable Deep Learning

Recently, deep learning has been advancing the state of the art in artificial intelligence to a new level, and humans rely on artificial intelligence techniques more than ever. However, even with such unprecedented advancements, the lack of explanation regarding the decisions made by deep learning models and absence of control over their internal processes act as major drawbacks in critical dec...

متن کامل

Deep learning-based CAD systems for mammography: A review article

Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...

متن کامل

Deep Mutual Learning

Model distillation is an effective and widely used technique to transfer knowledge from a teacher to a student network. The typical application is to transfer from a powerful large network or ensemble to a small network, that is better suited to low-memory or fast execution requirements. In this paper, we present a deep mutual learning (DML) strategy where, rather than one way transfer between ...

متن کامل

Mutual information for fitting deep nonlinear models

Deep nonlinear models pose a challenge for fitting parameters due to lack of knowledge of the hidden layer and the potentially non-affine relation of the initial and observed layers. In the present work we investigate the use of information theoretic measures such as mutual information and Kullback-Leibler (KL) divergence as objective functions for fitting such models without knowledge of the h...

متن کامل

Learning Explainable User Sentiment and Preferences for Information Filtering

In the last decade, online social networks have enabled people to interact in many ways with each other and with content. The digital traces of such actions reveal people’s preferences towards online content such as news or products. These traces often result from interactions such as sharing or liking, but also from interactions in natural language. The continuous growth of the amount of conte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2021

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2021.110551